Showing posts with label diesel. Show all posts
Showing posts with label diesel. Show all posts

Wednesday, March 20, 2013

Volvo V60 Plug-in Hybrid North American debut at the New York International Auto Show

March 20, 2013

The Volvo V60 Plug-in Hybrid will make its American display debut at the New York International Auto Show. The plug-in hybrid is one of three remaining candidates for the prestigious 2013 World Green Car of the Year award.

The V60 uses a parallel hybrid arrangement where the front wheels are driven by a 2.4 L 158 kW 5-cylinder diesel engine and the rear wheels are driven by an electric motor.



https://www.media.volvocars.com/global/enhanced/en-gb/Media/Preview.aspx?mediaid=48412

Monday, March 11, 2013

Hitting 2015 sulphur targets could increase harmful carbon emissions


March 8, 2013

A new report shows that the targets for shipping companies to reduce their sulphur emissions by 2015, as required by MARPOL Annex VI, could cause adverse environmental effects and result in a loss of 2,000 maritime services jobs, and place many more industrial jobs under threat. The report is the first of its kind to examine the full impact of hitting sulphur targets.

The report, commissioned by the UK Chamber of Shipping, on behalf of several North Sea and Western Channel shipping operators, provides evidence on the impact of reducing sulphur from ships’ emissions before the current deadline of 2015. The report shows the key impacts of hitting the 2015 sulphur reduction targets would be:

  • much more freight moved by road, rather than sea – increasing carbon emissions and causing more road congestion
  • up to 2,000 jobs put at risk in maritime engineering, navigation, catering, customer services, and other areas 
  • an increase of 2.8p per litre for the cost of road diesel 
  • significant increases (up to 29% in some cases) in the cost of passenger and container route ticket prices.
http://www.ukchamberofshipping.com/news/2013/03/08/2015-sulphur-targets-could-increase-carbon-and-cause-loss-2000-jobs-report-/
http://www.ukchamberofshipping.com/media/filer/2013/03/08/amec_uk_chamber_of_shipping_report_on_impact_of_2015_sulphur_targets.pdf

Sunday, March 10, 2013

Bosch hydraulic hybrid

March 5, 2013


Bosch’s new, hydraulic full-hybrid powertrain, developed in collaboration with PSA Peugeot Citroën, is intended for passenger cars as well as light delivery trucks operating in urban environments.

The hydraulic hybrid combines a conventional internal-combustion engine with hydraulic units and an accompanying nitrogen pressure accumulator to provide a brief boost to acceleration. The hybrid system is able to support gasoline and diesel engines in ranges where they do not work at optimum efficiency.

The power-split concept permits various drive options. For short journeys, stored energy can be used to run exclusively on hydraulically generated power, with the internal-combustion engine remaining inactive and the vehicle producing zero emissions. For longer journeys, or when driving at higher speeds, accelerative force is provided by the internal-combustion engine. Alternatively, the two types of powertrain can also be combined. In this case, the energy stored in the hydraulic system and the fuel burned in the internal-combustion engine work together to drive the vehicle, which also provides a brief boost effect.

In the new European driving cycle, it has the capacity to reduce fuel consumption by up to 30% when compared to a conventional internal-combustion engine. For purely urban driving, this rises to as much as 45% percent. As a result, the range of a compact car can be greatly increased using this alternative powertrain. The improved efficiency is due to the careful configuration of the two powertrain components.

What’s more, the hybrid system makes use of energy that would normally go to waste. Kinetic energy captured during braking is converted into hydraulic energy and stored in the pressure accumulator. When the vehicle is travelling at a constant speed, the engine can be run within an efficient range while also filling the hydraulic energy accumulator.

Detailed technical description of operation

In addition to a conventional internal-combustion engine, a hydraulic hybrid powertrain also includes a pressure accumulator and a reservoir. Hydraulic units compress a gas cushion using hydraulic fluid. Fluid and gas are kept separate from one another. The gas cushion stores energy by the gas being compressed rather like a coiled spring. At this point, the pressure in the system is over 300 bar. The amount of energy that can be stored in the pressure accumulator depends on the size of the system. As soon as the pressure within the accumulator is relieved, the system works in reverse. The gas expands once more, providing a compressive force on the hydraulic fluid and driving a hydraulic motor. This motor takes the stored energy and delivers it back to the vehicle via the transmission.

The pressure accumulator has a limited capacity and range compared with lithium-ion batteries but it is much quicker to recharge and can use the extra energy provided by the internal-combustion engine more efficiently.

Collaboration between Bosch and PSA

The  collaboration between Bosch and PSA Peugeot Citroën dates back to an engineering alliance set up in 2008. In 2011, this strategic partnership saw Peugeot launch the 3008 HYbrid4, the world’s first series-produced diesel hybrid passenger car with axle-split drive. PSA Peugeot Citroën developed the electrical components (electric motor, power electronics, and high-voltage generator) in close collaboration with Bosch, a collaboration which extended to developing the special technical setup needed to use the ESP® electronic stability program in hybrid vehicles. The hybrid powertrain concept now also features in PSA’s Peugeot 508 (both the RXH station wagon and the HYbrid4 sedan) and Citroën DS5 HYbrid4 models, for which Bosch supplies the electrical powertrain components.